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ABSTRACT 

Necessary and sufficient conditions are described on ap function ~ over the unit 
sphere in Euclidean n-space E ~ in order for ~ to be the pth order, elementary 
symmetric function of the prncipal radii on the boundary of a sufficiently 
smooth convex body of revolution in E n; here these radii are taken as functions 
of the outer unit normal direction on the bounding surface; p satisfies 
1 < = p < n - 1 .  

A convex body K in Euclidean n-space E", with sufficiently smooth boundary, 

has n -  1 associated elementary symmetric functions of  principal radii which 

are defined as follows. Let x(u) denote the unique boundary point of K at 

which the outer unit normal vector is u and let R~(u),...,R,,_l(U ) signify the 

principal radii of curvature of  the boundary of  K at x(u). Set 

(1) Fp(u) = ~, Ri~(u)'" Ri~(u), 

where the sum is extended over all increasing sequences il, "", iv of  indices chosen 

from the set 1,--., n - 1 .  We may view Fp as a function over the unit sphere 

of points u. 

In this note we study a special case of the following problem: what are neces- 

sary and sufficient conditions for a function 0 ,  defined over ~ ,  to be a function 

Fp as described by (1), for preassigned p satisfying 1 < p < n - 1 ?  We call this 

a Christoffel-Minkowski problem; the extreme cases p = 1 and p = n - 1  were 

first studied by E. Christoffel and H. Minkowski. Complete solutions of  

Minkowski's problem were given by W. Fenchel and B. Jessen ]-8] and A. D. 
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Aleksandrov [1]; those for Christoffel's problem are found in C. Berg [2] and 

W. Firey [6, 7]. The intermediate problems, where 1 < p < n - 1  and n > 4 

are almost completely open. 

The work presented here is little more than an extension of  results in a paper 

of  Z. N~tdenik [10] which treated Christoffel's problem for figures of revolution 

in the case n = 3. We derive necessary and sufficient conditions on a function if, 

defined over f~, in order that there is a convex body of revolution K for which 

~k(u) = Fp(u) 

for a preassigned p satisfying 1 =< p < n -  1. A few consequences of  this result 

are also mentioned. It is hoped that the special cases examined here may suggest 

the nature of the complete solution for problems of this type. 

The uniqueness question for Christoffel-Minkowski problems has long been 

settled: I f  K and K '  have equal pth elementary symmetric functions of  principal 

radii, then K and K '  differ at most by a translation. For details see Buseman 

[4, p. 70]. 
1. Let K be a convex body of revolution in E n, n > 3. For convenience, 

we suppose Cartesian coordinates xl,  . . - ,x,  introduced in such a way that the 

xn-axis is the axis of  revolution for K and the origin is an interior point of  K;  

consequently those hyperplanes x~ = const, which intersects K do so in ( n - 1 ) -  

dimensional balls. A meridian section of  K is the intersection of K with a half- 

plane bounded by the x,-axis. Such a section is a two-dimensional convex body. 

That part of  the boundary of a meridian section which lies on the boundary 

of  K itself is called a meridian of K .  The intersection of  the boundary of  K with 

the x~-axis consists of  two points: the north pole of K lying on the positive half 

of  the xn-axis, and the south pole on the other half. These poles are common 

end points for all meridians. The intersection of K with any of  its supporting 

hyperplanes is contained in a single meridian and the outer unit normal u to 

the hyperplane lies in the half-plane of  that meridian. Clearly the distance from 

the origin to such a hyperplane depends only on the angle 0 between u and the 

hyperplane x, = 0. Here 0 satisfies -re/2 < 0 < rr/2. We write h(O) for this 

distance. 

The smoothness assumptions about K will be these: h has a continuous second 

derivative h" and h + h" is strictly positive over - n / 2  < 0 < 7z/2. As a con- 

sequence, K is strictly convex and the mapping of the interval - ~ / 2  _< 0 < re/2 

into any one meridian is topological. With respect to behaviour at the poles 

we must have h'(__ g/2) = 0. It follows that 
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lim h'(0)/cos 0 = -T- h"(+__ n/2). 
0+:5=n12 

In view of  the foregoing remarks, supporting hyperplanes are tangent hyper- 

planes and each meets K in a single point. We write x(u) for that boundary point 

of  K at which the tangent hyperplane has outer unit normal u. Suppose x(u) 
is neither one of  the poles of  K:  at x(u) we have n - 2  equal principal radii of  

curvature 

R2(u) . . . . .  Rn-l(u) = R(u) 

whose common value is the distance of  x(u) from the xn-axis, divided by 

x/(1 - u~). The remaining principal radius Rl(u) is the radius of  curvature of  

the meridian through x(u) at that point. In terms of  h these radii are 

(2) R(u) = h(O)- h'(O)tanO, Rl(u) = h(O) + h"(O). 

The pth elementary symmetric function of  the principal radii of  K at x(u) is 

given by 

F,(u) = ( n ;  2)R,(u) + (p-21)Rl(u)RP-1(u). (3) 

Here Fp is a function of  the latitude 0 alone: we write 

4,,(0) = v , , (u ) .  

To put the connection between ~b v and h in a convenient form, we introduce 

the auxiliary function f defined by 

(4) f(O) = (h(O) cos 0 - h'(0) sin 0) p . 

The functions f and f '  given by 

(5) f'(O) = -psinO(h(O) + h"(O))(h(O)cosO - h'(O)sinO) p-l, 

are continuous over - n / 2  < 0 < n/2. Since f(O) is the pth power of  the distance 

of  x(u) from the x:axis,  it must be positive except at the poles of  K .  

The fundamental relation between f and q~p is found from (2), (3), (4), (5) to 

be 

(6) f ' (O) - (n -p-1) f (O) tanO= -pdpp(O)cosP-lOsino/(np- 21) . 

As subsidiary conditions we have 

(7) lira f(O)/cos PO exists 
O'-* ±n/2 
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by virtue of the behaviour of  h at the poles of  K.  Consequently we have from (6) 

and the properties of f ,  as a first condition on ~bv: q~p is continuous over 

-re/2 < 0 < r~/2 and tends to finite limits as 0 tends to __. re/2. 

Any solution of  (6) has the representation 

= -- 49p(z)cosn-2zsinz 1)cos - - 0 f(O) (C Pro' dz) / (p - 2 \  . v x 

for some choice of  the constant C. In order for (7) to hold for 0 ~ = zc/2, C 

must be chosen so that 

/, [-2 o (8) f(O) = p dp,(z)cos,_2zsinzdz ( ; - 2 '  . , 1 
,1o 

for -z~/2 < 0 < n]2. An application of  L'Hospital 's  rule shows that f as given 

by (8) does satisfy (7) at the north pole of  K.  

The required positivity o f f  yields our next condition on q~p: 

J 
" rt[2 

(9) qS~(z)cos"-2~ sinT d~ > 0 for - ~ / 2  < 0 < re/2. 
0 

Further, the behaviour of f at the south pole of  K shows that qSp must satisfy 

I'~12 
(10) = 0 .  

Under this assumption, L'Hospital 's  rule shows that (7) is also satisfied at the 

south pole. 

The strict convexity of  K entails the positivity of R(u) and Rl(u) as given by (2); 

the first of  these conditions is taken care of  by (9); the second yields a final re- 

quirement on ~bp. Because of the positivity of  f and (5), we must have 

f'(O)/sin 0 < 0: from (6) and representation (8) this gives 

I 
~/2 

(11) ~bp(0) > ( n - p -  1) q~p(z)cosn-2zsinzdz/cos"-lO. 
do 

for - z / 2  < 0 < z/2. 
So far we have proved the necessity part of  the following assertion. 

THEOREM. In order for a function ~ over ~ to be the pth elementary sym- 

metric function of the principal radii of a strictly convex body in Euclidean 

n-space which is a figure of revolution, it is necessary and sufficient that, in some 
system of geographic coordinates on I'~, ~ is a function dp of the latitude 0 alone 
and, over - ~ / 2  < 0 < z/2: 
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(a) 
(b) 
(c) 
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~b is continuous and has finite limits as 0 tends to +_ ~/2, 

f~/2c~(z)cos"-Zzsinzdz > 0 and is zero for 0 = - ~ / 2 ,  

tk(0) > (n - p - 1) j-~/2 tk(T) cos"- 2z sin z dz/cosn- 10, 

Israel J. Math., 

where n > 3 ,  1 < p < n - 1 .  

2. For the sufficiency part, we need only observe that conditions (a) and (b) 

ensure the existence of a unique positive solution f to (6) which satisfies (7). With 

this f ,  as given by (8), we may now construct h from (4); (c) guarantees that 

h + h" is positive. From all these facts the existence of a strictly convex body 

of revolution, with ~(u) as the pth elementary symmetric function of principal 

radii follows. 
A few comments on these conditions are in order. Conditions (b) and (c) imply 

that q5 is positive. Of course the positivity of q~ does not ensure the satisfaction 

of ( b ) a n d  (c); this observation is kthe basis of counter-examples to earlier, 

incomplete treatments of Christoffel's problem as well as intermediate Christoffel- 

Minkowski problems, see Aleksandrov [1] and Nfidenik [10]. 

The latter part of condition (b), that is equation (10), is what is sometimes 

called the closure condition in Christoffel-Minkowski problems; for sufficiently 

smooth convex bodies, not necessarily figures of rotation, Fp(u) must satisfy 

the vector equation 

(12) ~n uep(u)dog(u) 0, 

where dog(u) is the area element of f~ at u,  see Fenchel and Jessen [8]. In terms 

of qSp(0), since 

dco(u) = cos"-Z0 dO d~(u) , 

where the differential form d~  does not depend on 0, the last component equation 

in (12) reduces to (10). The remaining component equations of (12) hold by 

symmetry considerations alone. 

3. We close with three simple consequences of the theorem. 

I f  ~O satisfies (a), (b), (c) for some Po < n -  1, then it does so also for all larger 

p < n - 1 ;  as a matter of fact this is even true for p < n - 1 .  Geometrically, if 

is the poth elementary symmetric function of the principal radii of some convex 

body, then it is the pth elementary symmetric function of the principal radii of 

n - p o - 1  other convex bodies. Here the bodies in question must all be figures 

of revolution, but we conjecture that this is true generally. 
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If  ~0 and ~1 satisfy (a), (b), (c) for the same p and the same system of geo- 

graphic coordinates on f~, and if ~o and ~1 are non-negative numbers, not both 

zero, then ~k, defined by 

(13) ~(u) = ~o~o(U) + ~l~kl(u), 

also satisfies (a), (b), (c). By this means new processes of combinations for coaxial 

convex bodies of revolution are defined, one for each p satisfying 1 < p < n - 1 .  

Again, we conjecture that this can be done generally: it is certainly the case for 

p = 1, which corresponds to vector addition, as well as the case p = n - 1 ,  

which corresponds to Blaschke addition. In this connection, see [5] and [9]. 

In (12) choose c¢ o = l - t ,  cq = t, 0 < t < 1, and denote by Ks that convex 

body of revolution which has q/ as its pth elementary symmetric function of 

principal radii. As we noted in the introductory remarks, Kt is unique to within 

a translation. Two particular mixed volumes of Kt with the unit ball B, so-called 

Quermassintegrals, exhibit easily established and simple behaviour as functions 

of t: 

V ( K , p ;  B , n - p )  = Wn_v(Kt), V(Kt ,p  -b 1 ; B , n - p - 1 )  = Wn_v_l(Kt) .  

Here, as a matter of notation, we write V(C1, n t ; . . . ;C~,n~)  for the mixed volume 

of convex bodies C1, '" ,  Cq in E", where C i is taken n~ times and n, + ... + nq = n. 

The function W,_p(Kt) is linear in 1 -  t and t since 

(14) W,_p(K,) = 1 f ~(u)da2(u) = (1-t)W,_~(Ko) + tW,_p(Kx) .  
n J -  

This, and the succeeding integral formulas for Quermassintegrals are to be found 

in [3, p. 63]. I f  we write Ht for the support function of Kt,  then 

W,_p_ I(Kt) = _1 ~ Ht(u)tp(u)dco(u) 
n 3~ 

- ( 1 -  t) + t -n 

= ( 1 - t ) V ( K , , 1 ; K o , p ; B , n - p - 1 )  + t V ( K t , 1 ; K ~ , p ; B , n - p - 1 ) .  

To the right hand side we apply the inequalities of Fenchel and Aleksandrov, 

see Buseman [4, p. 50] in the form 

V(Kt,  1 ; t(i,  p; B, n - p - 1) > vel/(p + ~rt," ~ wp/(p + 1)ere. ~_. ' m - p - 1  \ J ' ~ t j r , n - p - 1  ~ t X i l  ~ 

for i = 0,1. This yields 
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(15) wP/(P+lYr"~ > (1 ~wP/(P+l)rr" ~ ,wp/(p+x)rr,- r r n _ p _  1 \ . tx t j  ~ - - ~ l r r  n _ p _ l k ~ t x O j  "F ~ r r n - p - 1  \~tS-l/, 

with equality if  and only if  Ko and K 1 are homothet ic .  This last remark is a con-  

sequence o f  the conditions for equality in the Fenchel and Aleksandrov inequalities. 

I t  should be kept  in mind that  (14) and (15) are proved here only for  sufficiently 

smooth  convex bodies o f  revolution which have parallel axes o f  revolution. 

O f  course the general case will be true if  our  second conjecture turns ou t  to be 

valid. 
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